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A b s t r a c t - - S e v e r e  acute respiratory syndrome (SARS) is a rapidly spreading infectious disease 
which was transmitted in late 2002 and early 2003 to more than 28 countries through the medium 
of international travel. The evolution and spread of SARS has resulted in an international effort 
coordinated by the World Health Organization (WHO). 

We have formulated a discrete mathematical model to investigate the transmission of SARS and 
determined the basic reproductive number for this model to use as a threshold to determine the 
asymptotic behavior of the model. The dependence of the basic reproductive number on epidemic 
parameters has been studied. The parameters of the model have been estimated on the basis of 
statistical data and numerical simulations have been carried out to describe the transmission process 
for SARS in China. The simulation results matches the statistical data well and indicate that early 
quarantine and a high quarantine rate are crucial to the control of SARS. @ 2005 Elsevier Ltd. All 
rights reserved. 

K e y w o r d s - - S A R S ,  Mathematical model, Basic reproductive number, Stability, Quarantine. 

1.  I N T R O D U C T I O N  

Severe acute  respi ra tory  syndrome (SARS) is a newly discovered infectious disease wi th  a high 

potent ia l  for t ransmiss ion  to close contacts.  SARS is an  acute  respi ra tory  illness caused by 

infect ion by the SARS virus whose key signs and symptoms  are fever, respi ra tory  compromise,  

chilis, muscle aches, headache, and  loss of appet i te .  The  etiological agent  of SARS is a coronavirus 

which was identified in March 2003 [1]. The  virus is spread p r e d o m i n a n t l y  by  droplet  and by 

direct or indirect  contacts.  
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It is believed that  SARS first appeared in China, in Guangdong province, on November 16, 
2002. There were 305 SARS cases and five deaths between November 16 and February 9, 2003, 

reported in the Weekly Epidemiologic Record. On February 26, new reports of SARS outbreak 
came in from Hong Kong and Vietnam. More and more cases were reported worldwide since 

March and WHO has been reporting the daily SARS infection data. Since March 17, 2002, 

complete data  has been collected and various kinds of research have been carried out. A new 
coronavirus has been isolated from patients with SARS [2], and the sequence of the complete 

genome of SARS-CoV was determined [3,4]. 
SARS is a highly contagious and rapidly spreading disease. It has taken advantage of the ease 

of international travel and as of June 13, 2003, the cumulative number of probable SARS cases 

worldwide has reached 8,454 with 792 deaths [5]. On the basis of detailed data, WHO estimates 
that  the case fatality ratio of SARS ranges from 070 to 50% depending on the age group affected, 
with an overall estimate of case fatality of 14% to 15% [6]. 

Though much effort has been devoted to understanding this new health threat,  and much 
successful research has been done on the disease, there are still no effective drugs or vaccines for 
SARS. Control has relied mainly on the rapid identification of cases and on effective isolation of 

probable cases and their contacts. 
China is one of the countries most severely influenced by SARS. The cumulative number of 

diagnosed SARS cases is 5,327 with 343 deaths [7]. The diagnosed SARS cases were distributed 
over most provinces and special districts, and the number of SARS cases in China account for 
almost two-thirds of all reported cases worldwide. China was regarded as the epicentre of the 
SARS outbreak. A report  of a WHO assessment team reached the following conclusion [8]. "If 
SARS is not brought under control in China, there will be no chance of controlling the global 
threat  of SARS. Achieving control of SARS is a major challenge especially in a country as large 

and diverse as China." 
SARS was t ransmit ted mainly in Guangdong province in the southern part  of China, before 

March 2003. The reported total of SARS cases was 305 with five deaths by February 9, 2003. 
Updated data  on SARS cases and deaths in China has reached a total  of 792 cases and 31 deaths 

as of February 28 [9]. On March 31, 2003, the diagnosed SARS case accumulated to 1,190 with 
46 deaths [10]. There was a rapid spread of SARS in China beginning in April. Especially in late 

April and early May, the number of daily new diagnosed SARS cases was over 100. 
The rapid growth in number of SARS cases set up a strong alarm to government and people, and 

public health authorities, physicians, and scientists all over the country began a campaign to cope 

with a severe and rapidly spreading infectious disease. Drastic measures and actions were taken 
to bring SARS under control since April 20 [11]. Newspapers, radio, TV stations, and posters 
campaigned to educate the public on SARS prevention. Disinfectant was sprayed in many public 
places, including streets, shopping centers, airports, railways, bus terminals, classrooms, offices, 
and t ransportat ion vehicles. Individuals who have had direct or indirect contact with probable 
SARS-infected cases have been quarantined in their homes, hospitals, or campuses. Stern travel 

advisories were issued to students and workers, and the Golden week holiday (International 
Labour Day) was shortened from seven days to five days. A body temperature  check is done for 
all air passengers and passengers who fail a therm-imaging check at the entrance are checked by 
nurses and doctors at the station's quarantine center. Many stock exchanges, cinemas, theaters, 
and internet cafes were closed temporarily. Quarantine outpat ient  departments were set up for 
fever patients in many large hospitals. Special hospitals for SARS treatment  were specified in 
every large city. For example, the emergency quarantine center in Xiaotangshan, with a 1000-bed 
facility, was constructed within eight days. The number of daily reported new diagnosed SARS 
cases were large in late April and early May, but  the control measures taken were adequate and 
effective. SARS infections began to decline after the middle of May, and the downward trend 
has continued until now. The daily number of reported new probable cases of SARS in mainland 
China declined considerably from an average of 166 cases during the first week of May to 90 
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cases during the second week, 27 cases in the third week, and 16 in the fourth week. The daily 

number of reported new cases dropped to an average of 2.5 [12] and has decreased to zero more 

recently [13]. 
However, SARS transmission and all the measures to combat SARS have had strong negative 

side effects on daily life and development of the economy. Can these strict control measures be 
relaxed, and when is a suitable time to begin the relaxation? Any change in control measures will 

have effects on the spread of SARS. The present zero infection situation was not easy to achieve 
and any relaxation of control measures must be done carefully to avoid a recurrence of infections. 
Therefore, it is important to know what will happen if some of the quarantine measures are 

cancelled. 

There are many questions about SARS transmission, which are, in fact, questions of importance 

for any disease outbreak. How many further infections will be produced by each infected person 
per day? How many people will become infected in the future? When will the infection peak 
arrives? How tong does the infection peak last and how high is the peak? Will the current public 
health measures be enough to bring SARS under control? Mathematical modelling and analysis 
can help to give some answers to these questions. 

In this paper, we formulate a discrete mathematical model to investigate the transmission of 
the SARS. A comparison theorem for the model has been established. The basic reproductive 
number for the comparison model has been calculated and used as a threshold to determine 

the asymptotic behavior of the model. We have used the data for SARS between April 20 and 

June 10, 2003 in China to estimate the epidemic parameters in the models. Numerical simulations 
have been carried out to show the transmission process for SARS in China and the simulation 

results match the statistical data well. The rapid decrease of the infected number per day per 
unquarantined SARS infection show that a high quarantine rate and early quarantine are crucial 
to the control of SARS. Our results in this paper give partial answers to the questions mentioned 
above, and can help to make assessments of control measures. 

The paper is organized as follows. The discrete mathematical model for SARS transmission 

is formulated in Section 2 and the asymptotic behavior of the model is analyzed in Section 3. 
The simulations for different epidemic parameters are done to show SARS transmission and the 
influence of the parameters in Section 4. The dependence of the the basic reproductive number 

on the epidemic parameters is discussed, and suggestions on the interpretation of our simulations 
are given in Section 4. 

2. M O D E L  F O R M U L A T I O N  

While epidemiologists are still working to understand SARS and to develop a treatment, math- 
ematical models have been formulated and analyzed in order to help formulate control strategies 
until a treatment can be developed. By piecing together preliminary data on the infections and 

making use of accumulating case notifications, the quantitative assessment of the epidemic poten- 

tial of SARS, and the effectiveness of control measures have been analyzed by Lipsitch et al. and 

Riley et aI. [14,15]. Their main conclusion is that this new coronavirus is sufficiently transmissible 
to cause a very large epidemic if unchecked, but not so contagious as to be uncontrollable with 
good, basic public health measures. On the basis of several sources containing information on 
epidemiological, demographic, and clinical variables in Hong Kong, the key epidemiological time 
distributions from infection to onset, onset to admission, admission to death, and admission to 
discharge, and the relations between the SARS case fatality rate and patients' age have been 
estimated by Donnelly et al. [16]. By using global and regional data from the SARS epidemic a 
mathematical model on SARS transmission was set up, and the average properties extracted by 
Chowell et  al. [17]. 

We formulate a discrete mathematical model to estimate the epidemic parameters, to predict 
the transmission of the disease, and to give assessment of the effect of the control measures. We 
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follow the basic idea and structure of mathematical modelling in epidemiology [18,19]. We divide 
the population into the following six classes, as follows. 

Susceptibles S(t):  members of the population who may become infected. 
Exposed E(t) :  members of population infected by the SARS virus, in the incubation 
period, asymptomatic, possibly infectious (without infectivity or with very low infectivity). 
Infectives I( t ) :  members of the population who are infective with strong infectivity, but 
have not yet been quarantined. 
Quarantined Q(t): members of the population who have been infected, and have not been 
diagnosed, but have been quarantined. 
Diagnosed J ( t ) :  members of the population who are infective, have been diagnosed and 
have been quarantined. 
Recovered R(t): members of the population who have recovered from the disease with full 
immunity against reinfection. 

The variables S( t ) ,  E ( t ) ,  I ( t ) ,  Q(t ) ,  J ( t ) ,  and R(t)  are the numbers of the individuals in the six 
classes at  time t, respectively. Since all the data of the SARS infection are now announced daily, 
it is natural for us to use a discrete epidemic model to describe the dynamics of the spread of 
SARS. We assume that the epidemic process operates on a much faster time scale than natural 
deaths, and assume that the only deaths are due to disease. 

The number of exposed, infective, quarantined, diagnosed, and recovered members is very 
small compared to the number of susceptibles. For example, the population size of China is over 
1.3 billion, while the cumulative number of diagnosed SARS cases is under 6000. We assume 
that all contacts sufficient to transmit infection by infectious members of the population are with 
susceptibles, neglecting contacts with exposed, infective, quarantined, recovered, and diagnosed 
members. Thus, all these contacts produce new infections, and we concentrate our modelling and 
analysis on exposed, infective, quarantined, diagnosed, and recovered members. This will have 
the effect of leading to a linear system model. 

An individual infected by SARS virus enters the exposed class and is in the incubation period. 
The incubation period lasts two to 12 days [20]. Although it is not yet known whether individuals 
in the incubation period are able to transmit SARS, we suppose that they have some infectivity, 
but a lower infectivity than infectives. Some exposed individuals will enter the quarantined class 
as a result of prevention measures. The remaining exposed individuals will enter the infective 
class. Individuals in the quarantined and infective classes will enter the diagnosed class after 
obvious symptoms of SARS appear and they are diagnosed definitely. Diagnosed individuals 
either recover and enter the recovered class or die of the infection. The schematic representation 
of the individual flow between the different classes is shown in Figure 1. 

Figure I. The flow of individuals among different classes. The new infected exposed 
is proportional to  the sum k E ( t )  + I ( t ) .  Eindividuals move into the infective class 
and quarantined class at the rate E and A, respectively. Q-individuals moves to 
diagnosed class J at  the rate u. I-individuals moves to the diagnosed class J a t  the 
rate 8. J-individuals moves to the recovered class R at the rate y. The individuals 
in I and J classes die at  the rate 15. 
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From the transmission mechanics and the schematic representation in Figure 1, we obtain 
recurrence relations for the numbers of individuals in the five classes. The number of exposed 
members at time t + 1 is equal to the number of the exposed members at time t plus the 
newly infected members minus the individuals who move to the quarantined and infective classes. 
Similar arguments can be used to obtain the recurrence relations for the infectives, quarantined, 
diagnosed, and recovered members. 

Therefore, we can formulate the following system of linear difference equations as a mathemat- 
ical model using the general principles of epidemiological modelling [21,22]. 

E ( t  + 1) = E (t) + fl (t) (kE (t) + I ( t ) ) -  (s + A) E ( t ) ,  

I ( t  + 1) = I ( t )  + s E ( t )  - (5 + 0) I ( t ) ,  

Q (t + 1) = Q (t) + :~E (t) - ~Q (t) ,  (1) 

J (t + 1) = S (t) + oz (t) + oQ (t) - (~ + ~) s ( t ) ,  

R (t + I) = R (t) + "yJ (t), 

E (0) > 0, I (0) > 0, Q (0) > 0, S (0) > 0, R (0) > 0, 

where 5 is the SARS induced death rate, 7 is the recovery rate, E is the transfer rate from exposed 
to infective class, A is the transfer rate from exposed to quarantined class, a is the transfer rate 
from quarantined to diagnosed class, 0 is the transfer rate from infective to diagnosed class, k is 
the infectivity fraction for the exposed individuals compared with individuals in the infective 
class, and 3(t) is the transmission rate per day. 

We make the following assumptions on the parameters of the discrete SARS model (1). 

(A1) All the parameters are positive, and the following inequalities hold, 

0 < d + E + A < I ,  0 < 5 + 0 < 1 ,  0 < a < l ,  0 < 5 + 7 < 1 .  

The epidemiological interpretation of these inequalities is that  the transfer rates of indi- 
viduals in classes E, I,  Q, J,  and R from time t to t + 1 is between 0 and 1. 

(A2) The transmission rate function /3(t) is a continuous function bounded by /30 and /3*, 
/30 _/3(t)  < 3*. This inequality says that  the transmission rate of an infective individual 
per day is bounded. 

Define the vector, 
(t) = ( E ( t ) , I ( t ) , Q ( t ) , Y ( t ) , R ( t ) )  T ,  

and the matrix A(3(t)), 

1 + k/3 (t) - (s + )9 /3 (t) 0 0 ] 
1 - (5 + o) o 

o o ] o 1 - (~) ' 
o o ~ 1 - (5 + ,y) 

where, T stands for the transpose of a vector. The vector form of the SARS model (1) is 

~ ( t + l ) = A ( / 3 ( t ) ) ~ ( t ) ,  ~(0) = ~ o  > 6. (2) 

From the recurrence relations of model (2), we can get obtain an explicit expression for the 
solution of the SARS model (2), 

:~(t) = A (/3 (t - 1)) A (/3 (t - 2) ) . . .  A (/3 (1)) A (/3 (0)) 2(0) (3) 

and this gives the numbers of individuals in each class at each time once the parameters and 
initial values are determined. 
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3. T H E  D I S E A S E - F R E E  E Q U I L I B R I U M  A N D  I T S  S T A B I L I T Y  

There are many results for continuous epidemic models, but there has been little analysis of 
discrete epidemic models. Allen has studied the discrete SI, SIS, SIR epidemic models and found 
that the SI and SIR models are similar in behavior to their continuous analogues under some 
natural restrictions, but the SIS model can have more diverse behaviour [23]. Castillo-Chavez 
and Yakubu have studied discrete time SIS models which exhibit bistability over a wide range 
of parameter values [24,25]. M@ndez and Fort investigated the dynamical evolution of discrete 
epidemic models by taking into account an intermediate population [26]. Allen and Thrasher 
formulated an age-dependent model for varicella and herpes zoster and the effects of various 
control strategies [27]. Hethcote and van Ark formulated discrete epidemic models to study HIV 
transmission in the United States [28]. Lesnoff et aI. developed a seasonal population-dynamics 
Leslie matrix model to account for seasonal changes in demographics rates and to assess the 
effects of preventive medicine programs on the productivity of sheep flocks [29]. 

In this section, we give a brief analysis of the asymptotic behavior of the discrete SARS 
model (1). Because system (1) is linear, its stability properties are global. 

There is only one equilibrium of the SARS model (1), namely, the disease-free equilibrium 
P°(0, 0, 0, 0, 0). From the expression for solution (3), we see that asymptotic stability of the 
disease free equilibrium is completely determined by the product of the matrices 

A (/3 (t - 1)) A (/3 (t - 2)) . . .  A (/3 (1)) A (/3 (0)). 

To analyze the product of matrices with time dependent elements, we need to establish the 
following comparison theorem. 

THEOREM 1. Assume that Hypotheses (A1) and (A2) hold. Let if(t), 3(t), and ~(t) be the 

solutions of the difference equations, 

ff(t + 1) = A(/30)ff(t), S(t  + 1) = A ( / 3 ( t ) ) ~ ( t ) ,  and ~'(t + 1 ) =  A(/3*)g(t),  

with the same positive initial value ~(0) = 3(0) = ~(0) >_ O. Then, for any t > O, 

(t) < 3 ( t )  _<_ ~ (t) .  

PROOF. Let if(t), ~(t), and ~7(t) be the solution of the difference equations with the same initial 

value 
ff(t + 1) = A(/30)g(t),  

~(t  + 1) = A( /3( t ) )2( t ) ,  

g(t  + 1) = A(/3*)g(t),  

(0) = 10 > 6, 

(0) = 30 > 6, 

(0) = ~0 > 6. 

(4) 

Hypotheses (A1) and (A2) imply that the solutions ~(t), 3(t), and g(t) are nonnegative, for all 
$ > O, that is, 

(t) >_ 6, ~ (t) > 6, ~( t )  > 6. 

From the equations in (4), it follows that 

~ ( 1 )  - i f ( i )  = [A (/3 (0)) - A (/30)] ~0 >_ 0, 

~'(1) - ~ ( 1 )  = [A (/3*) - A (/3 (0))] ~0 _> 0. 

That is, 
~( i )  _< 3(1) < ~7(i). 
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By defining ((t) = ~(t) - ~7(t) _> 0 and rT(t) = ~7(t) - 2-(t) _> 0", 

:g(t + 1) - g ( t  + 1) = [A (/3 (t)) - A (/30)] g ( t )  + A (fl ( t ) ) ( ( t )  > 0, 

g ( t  + 1) - : ( t  + 1) = [A (/3*) - A (/3 (t))] :g(t) + A (/3*)rT(t) _> 6. 

Hence, the theorem is proved by induction. 

Theoretically, the asymptotic behavior of the nonautonomous linear SARS model (1) is com- 
pletely determined by the product A(/3(t - 1))A(fl(t - 2 ) ) . . .  A(/3(1))A(~(0)). In practice, the 
explicit expression of the product AO3(t - 1))A03(t - 2 ) ) . . .  A(/3(1))A03(0)) is not easy to obtain. 
We use the following two comparison systems to control the solutions of the SALES model (1), 

~'(t + 1) = A (/3*) g ( t ) ,  

ff (t + 1) = A (/30) g (t),  

:(o) = i 0  > 6, (5) 

: ( o )  = 2 0  > 6 .  (6) 

It follows from Theorem 1 that the solution of (5) provides an upper bound for the solution of 
SARS model (1), and the solution of (6) provides a lower bound for the solution of the SARS 
model (1). Since the two comparison systems (5) and (6) are linear systems with constant 
coefficients, their asymptotic behavior is much easier to determine than that of (1). The zero 
vector is the equilibrium solution of the two comparison systems. 

Let us first determine the asymptotic behavior of the comparison model (5). The solution of 
the comparison model (5) is 

: ( t )  = [A (/3*)]t J0 >_ 6. (7) 

The asymptotic behavior of solutions of the comparison model (5) is determined by the magnitude 
of the eigenvalues of the matrix A03* ). The eigenpolynomial of the matrix A(13*) is 

f (p) = IA (~*) - pII = [pc _ bp ÷ c] [p - (1 - 5 - 7 ) ]  [P - (1 - o r ) I ,  (s) 

where 

b = 2 + k ~ *  - ( e + ) ` + 5 + O ) ,  

c =  (I - 5 - O )  (l + k~* -e- )`)-e~*. 

All four eigenvalues of A(/3*) are real, and they are given by 

where 

f l l  = 1 - a, 

p2 = 1 - (~ + ~), 

P3----~ b +  

p4 = ~ 

(9) 

b 2 - 4 c = ( k f l * + 6 + O - e - ) , ) 2 + 4 e f l *  > 0 .  

It is obvious that  0 < pj < 1 (j = 1,2). The stability of the disease free equilibrium is 
determined by the magnitude of the eigenvalues P3 and P4. We focus on the critical eigenvalues 
Pa = 1 and P4 = -1 ,  where P3 and P4 are the solutions of the quadratic equation, 

p2_  bp+c  = O. 
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From the  explicit  expressions of p3 and P4, we see t h a t  t hey  are cont inuous  funct ion of fl*- W h e n  
fl* = 0, we ob ta in  the  roots  

O < p 3 = l - ( z ÷ A ) < l ,  

0 < p 3 = 1 - ( 6 ÷ 0 ) < 1 ,  

O < p 4 = l - ( s ÷ A ) < l ,  

0 < p 4 = 1 - - ( 5 ÷ 0 ) < 1 ,  

i f 6 + O > s + A ,  

i f 6 + O < s + A ,  

i f T + O < s + A ,  

i f 6 + O ~ s + A .  

T h e  fact b 2 - 4c > 0 implies t h a t  P3 and  P4 are s imple  roo ts  of the  quadra t i c  equat ion  (10), 

and 2pj = b -4- ~ - 4c ~ b(j = 3, 4). Different ia t ion of b o t h  sides of  equa t ion  (10) wi th  respect  

to fl* yields t h a t  
Op k p - k ( 1 - 6 - O ) + c  

off* 2p - b 

In the  critical cases p3 = 1 and p4 = - 1 ,  we have 

Op3 p3=l -- k ( 6 ÷ 0 ) ÷ 6  Op4 p4=-1 = - / ¢ ( 2 - 6 - 0 ) ÷ e  
03* v ~ -  4~ ' 03* - v ' ~  - 4~ 

T h e  above equali t ies show t h a t  the  root  P3 always increases wi th  respec t  to  fl* whenever  P3 = 1. 

Th is  fact  implies t h a t  there  is only  one critical value, 

ft.  ( ~ + ~ ) ( 6 + 0 ) ~  . 
= s + k ( 6 + 0 )  = # 1 ,  

such t h a t  0 < p3 < 1, if/3* < fl ; ,  and  p3 > 1, i f f l*  > fl[. A similar  a r g u m e n t  implies t ha t  

there  is no critical value of fl* if ~ ~_ k(2 - 6 - 0), and  there  is only  one cri t ical  value of fl* 

if e > k(2 - 6 -  0), 

~ .  = 4 + ( 1 - 6 - O ) ( 1 - z - A ) - ( E +  A ÷ 6 + O )  ~_ fl~, 
- k (2  - 6 - o )  

such t h a t  p4 > - 1  if fl* < fl~, and P4 < - i  if fl* > 3~. Under  the  condit ion,  E > k(2 - 5 - 0), 

an  algebraic  calcula t ion gives 

32 - fl* [4 - 2(e ÷ ,~ + 5 + O)][s + k(6 + O)] + 2k(~ + ),)(5 + O) 
* 1 = [~ + k(6 + 0)116 + k(6 + 0) - 2k] > 0. 

T h e  above inequality,  fl~ > fl~, implies t h a t  the  root  P3 will increases to  1 before the  root  P4 
decreases to - 1  as the  t ransmiss ion  ra te  fl* increases f rom 0 to infinity, t h a t  is, the  disease-free 

equi l ibr ium will lose its s tabi l i ty  when  p3 = 1. 
Define the  basic r ep roduc t ive  n u m b e r  

R0 = 3"(~ + k(6 + 0)) 
(~ + ~)(6 + o) ' 

T h e  basic  r ep roduc t ive  n u m b e r  Ro can be wr i t t en  as 

R0 = f l *  x k x E +-~ +--~ x 

where fl* is the  n u m b e r  of the  new infections p roduced  by  an infective individual  per  day, k is the  
infect ivi ty  f ract ion of an individual  in the  exposed  class c o m p a r e d  wi th  an individual  in infective 
class, 1/(6 + A) is the  average t ime  t h a t  an exposed  m e m b e r  remains  in t h a t  class, ~/(~ + A) is 
the  f ract ion of exposed  m e m b e r s  who move to  the  infective class, and  1/(6 + 0) is the  average 
t ime  t h a t  an infective individual  remains  in the  class I .  T h e  epidemiological  in te rp re ta t ion  of 
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the basic reproductive number is that  Ro is the expected number of secondary infectious cases 
generated by an average infected individual during the infective period in an entirely susceptible 
population. This quantity determines the potential for an infectious agent to start an outbreak, 
and the extent of transmission in the absence of control measures. 

It follows from the expressions for the eigenvalues that  P3 < 1, if Ro < 1, and P3 > 1, if 
Ro > 1. Since the four eigenvalues of the matrix A(/3*) are real and simple (or double but with 
two independent eigenvectors), the four eigenveetors corresponding to the 4 eigenvalues form a 
basis of the four-dimensional Euclidean space R 4. Any vector in R a can be expressed as a linear 

combination of those eigenvectors. 

In particular, 

:~0 : C l g l  -t- C292  -}- e 3 9 3  -Jr- C4V'4, (11) 

where gj is the eigenvector corresponding to the eigenvalue, 

pj (j = 1,2,3,4) ,  

and 

= 

1 
E 

6 + O - - l + p a  

A 

or -  l + p 3  

! ( 
6 + ' 7  l + p 3  6 + 0  1 + p 3  

By applying A(/3*) to the expression for x~0, it 

+ aA h 

follows from (7) that 

V (t)  -~ Clpi  ~ 1 ~- C2pt V2 @ c3pt  v3 n L- c4pt~4. (12) 

It follows from the expression ~'(t) in (12) that  

lim g(t) = 0", if p3 < 1, 
t ---~Oc:) 

lim g(t) = o% if Pa > 1, 
t ---~CX) 

lim ~7(t) = c4ff4, if P3 = 1, 
t ---* OO 

where c3 is found from the equation (11). The case/3* =/3~ is the critical value, for which the 
eigenvector g3 corresponds to the eigenvalue Pa = 1. 

The above analysis can be applied to the model (6) to obtain a similar result. By using the 
comparison theorem, we obtain the following stability theorem. 

THEOREM 2. The disease-free equilibrium of the SARS model (1) is globally asymptotically 
stable if/3* </3"1 and unstable if/3o >/3~. 

The stability in Theorem 2 is easily proved using the comparison theorem and the fact that  

p 3 < l  ( p 3 = l , p 3  > 1) 

is equivalent to 

R0 < 1  (Ro- -1 ,R0  > 1 ) .  
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4.  N U M E R I C A L  S I M U L A T I O N  

Although the disease is not yet well understood, much data  has been collected during the 

SARS epidemic. We use statistical da ta  for SARS in China to estimate the parameters and 
do numerical simulations on the basis of the discrete SARS model (1). The average incubation 
period is taken as six days, divided into two parts, the first three days in the exposed class with 
less infectivity, and the last three days with more infectivity. The fraction k is taken as 0.1. 
From the statistical data, we estimate that  a fraction 3/5 of the diagnosed SARS cases came 
from SARS suspected individuals, who had been quarantined and treated in hospitals, and a 

fraction 2/5 of the diagnosed SARS cases came from unquarantined individuals. We assume 
that  a fraction 3/5 of the exposed individuals have been quarantined after they left the exposed 

class due to the stringent control measures. The transfer rate from the exposed class to the 

quarantined class is taken as a fraction (1/3) (3/5), while 2/5 of the exposed individuals still 
have not been quarantined after they left the exposed class before obvious SARS symptoms 
appeared and they were diagnosed. The transfer rate from the exposed class to the infective 
class is taken as (1/3) (2/5). Individuals in the infective and quarantined classes will enter the 
diagnosed class after three days on average and individuals in the diagnosed class will recover 
or die after three weeks in hospital on average. The SARS induced death rate is taken to be 

(15/100) (1/21). Thus, the values of parameters are estimated as follows: 

c = (1/3)(2/5),  A = (1/3)(3/5),  5 = (15/100)(1/21), 

0 = 1/3, ~ = 1/3, 31 = 1/21, k = 0.1. 

The infection rate ~(t) is the most important  parameter  in the model and model predictions 
are very sensitive to changes in the infection rate. From the statistical da ta  we know that  the 
infection rate t3(t) is a decreasing function after stringent control measures went into effect and 

cut down the infection gradually. We t ry  to fit the function/3(t) by repeated numerical simulation 

and choose a fractional function of t, 

3 1 + t  
/3(t) = 22 + 5t" 

From the statistical data we estimate the initial values as of April 21, 2003, 

E(0) = 477, r(0) = 286, Q(0) = 191, J(0) = 848, R(0) = 1213. 

Using MATLAB, we obtain the simulation result shown in Figure 21. 
In Figure 2, the dotted line is the statistical da ta  [30], the continuous curve is the prediction 

of the model. The infection rate is estimated from the actual statistical data  to be 

3 1 + t  
/3(t) = 22 + 5t" 

We see tha t  the number of the diagnosed SARS individuals (who are staying in hospitals) increases 

rapidly for the first three weeks and reaches a peak on May 11. The predicted number on May 11 
is 3,083. After May 11, the number decreases rapidly. This shows the effectiveness of the stringent 
control measures adopted in China. The prediction curve matches the actual da ta  well. 

In order to investigate the influence of the infection rate/3(t) ,  we do numerical simulation by 
taking j3(t) to be three different constants. In Figure 3, fl(t) is taken to be 0.7, slightly above 
the critical value/3~ = 0.6781. The simulation results shows that  the number of diagnosed SARS 
cases was below the actual data  before May 15, but  it continues to increase and reaches 28,060 
one year later. In Figure 4,/3(t) is taken to be critical value,/3~ = 0.6781. The simulation results 

lIn the figures, from Figures 2-10, the horizontal axis is the time measured in days starting from April 21, 2003. 
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Figure 8. The prediction and actual diagnosed SARS cases in China k = 0.2. 
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Figure 9. The prediction and actual diagnosed SARS cases in China k = 0.3. 
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Figure 10. Decline of the secondary reproductive number R*. 
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shows that the number of diagnosed SARS cases continues to increase and reaches a stable value, 
Y = 3548. In Figure 5, fl(t) is taken to be 0.3, which is well below the critical value, t3~ = 0.6781. 
The simulation result shows that the number of diagnosed SARS cases is always less than the 
actual data. The peak appears at the end of April with the maximum number, 

Y = 1403. 

Next, we investigate the influence of delaying quarantine by fixing the infection rate, 

3 1 + t  
9 (t) - 22 + st'  

and taking the other parameters the same as above. We vary the transfer rate 0 to obtain different 
results. In Figure 6, the transfer rate 0 is taken to be 1/4, that is, individuals stay in infective 
class one day longer. The simulation result shows that the peak will move to May 17, with 
maximum number 4,111. Compared with the result shown in Figure 2, the peak is six days later, 
and 1028 individuals higher. In Figure 7 the transfer rate 0 is taken to be 1/5, that is, individuals 
stay in infective class two days longer. The simulation result shows that the peak will move to 
May 24, with maximum number 5,561. Compared with the result shown in Figure 2, the peak 
is 13 days later, and 2,478 individuals. The simulation results indicate that timely quarantine is 
significant for the control of SARS transmission. 

Finally, we investigate the influence of k, the infectivity fraction of individuals in the class E 
compared to individuals in class I on SARS transmission. In the prediction of Figure 2, the 
proportion is 0.1. Here, we vary the proportion to be 0.2 and 0.3 (See Figures 8 and 9), and leave 
the other parameters unchanged. In Figure 8, k is 0.2, and we see that the number of diagnosed 
SARS cases is higher than that in Figure 2. The peak is reached on May 15 with maximum 
number 4,682. The number of diagnosed SARS cases at the peak is 1,599 higher than that in 
Figure 2. In Figure 9, k is 0.3 and we see that the number of diagnosed SARS cases is much 
higher than that in Figure 2. The peak is reached on May 20, with maximum number 8,227. The 
number of diagnosed SARS cases at the peak is 5,144 more than that in Figure 2. 

Similar ideas and further simulations can be used to study the influence of other factors on the 
SARS transmission. 

The simulation results in Figures 8 and 9 shows that infections transmitted by individuals in 
the exposed class can have great influence on SARS transmission. This indicates that determi- 
nation of the infectivity for exposed individuals is essential for making good predictions. Early 
identification, early tracing and early quarantine are key factors in coping with the spread of 

SARS. 

5.  D I S C U S S I O N  

We have formulated an EIQJR model to study the spread of SARS in China. The dynamical 
behavior of the model is analyzed, the basic reproductive number is determined and used as a 
threshold for the spread of the SARS epidemic. Numerical simulations have been done for our 
model of the transmission of SARS in China after the parameters and the initial values have 
been estimated and the prediction curve fits the actual data well. The modelling, analysis and 
simulations in this paper form a simple and rough approach to the complete research of SARS 

transmission. 
Similar to other epidemic models the basic reproductive number R0 plays a crucial rule in the 

spread of SARS. However, since we are using a time-dependent infection rate 13(t) in our model, 
we define a secondary reproductive number 

R* = 9 (t) (~ + k (d + 5 + e)) 
( d + ¢ + A ) ( d ÷ 5 + O )  ' 
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which is t ime-dependent  and which we use in place o f / to  in describing the course of the epidemic. 

From the est imates based on the da ta  in China, we found tha t  the secondary reproductive num- 

ber R* decreases with t ime due to the effect of the control measures. The  simulated secondary 

reproductive number  R* is shown in Figure 10. From Figure 10, we see tha t  this reproductive 

number is 1.7478 on April 20, 1.0493 on April 25, 0.9331 on April 26, 0.8044 on April 30, 0.5530 
on May 15, 0.4640 on May 31, and 0.4227 on June 15. The secondary reproductive number R* 
is quite large on April 20 since few prevention measures had been taken before tha t  day. After 

April 20, various stringent and drastic preventive measures were taken across the nation. Those 
control measures took effect gradually and the secondary reproductive number  R* decreased 

rapidly in late April and early May, dropping to 0.9331 on April 26, and the number of daily 

reported SARS diagnosed cases began to decrease in early May. 

From the expression for the basic reproductive number  R0, we see tha t  R0 increases with k 

and/3,  and decreases with 0. Thus, increases in/3 and k, and an increase of the period in the 

infective class all would contribute to an increase in the basic reproductive number.  In a similar 
way, we can s tudy the influence of changes in the other parameters  on the basic reproductive 

number. In order to reduce the infection, it is necessary to bring the secondary reproductive 

number  below 1 and the smaller the secondary reproductive number,  the more rapid the decrease 

of the disease. Our suggestion is to identify and quarantine SARS infected persons as early as 

possible. 
SARS transmission is a complicated problem and our analysis is based on a simple model. 

Many more factors should be take into account to develop a more accurate model, but our simple 
model is sufficiently accurate to point to suitable control measures. 

We have not considered the fact tha t  numerous cases of infections to health-care workers were 

reported in the early stages of the spread. Infected doctors and nurses account for roughly a 

quarter  of the SARS cases in China before the middle of April. These health care workers have 

close contact with infectives and form a high risk groups. How to include SARS transmission in 

health care workers in our model is an important  question and it would be impor tant  to learn 

what  new phenomena might appear  if this factor was considered. 
Different quarantine and various stringent control measure have been used in coping with 

SARS transmission in China. How may we describe the effect and assess the effectiveness of 

these measures in a model? For example, if a person is diagnosed as SARS infected or suspected, 
how many  directly or indirectly contacted people should be quarantined in their homes or in 

hospital? 

China is a vast country with a huge population a n d  SARS transmission is different from city 

to city and province to province. For most cities and provinces there are very few SARS cases. 

Should equally stringent control measures be taken over the entire nation or should the stringency 

of the measures taken depend on the severity of the outbreak? I t  would be valuable to formulate a 

mathemat ica l  model to describe SARS transmission for those cities or provinces with few reported 

cases? We hope tha t  more practical and applicable models will be formulated for the prediction 

and understanding of the SARS transmission. The goal would be to develop a s t rategy for coping 
with any future serious infectious disease. 
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